Dental pulp stem cells (Wikipedia)

Dental pulp stem cells (DPSCs) are stem cells present in the dental pulp, the soft living tissue within teeth. They are multipotent, so they have the potential to differentiate into a variety of cell types. Other sources of dental stem cells are the dental follicle and the developed periodontal ligament.[1]

A subpopulation of dental pulp stem cells has been described as human immature dental pulp stem cells (IDPSC).[2] There are various studies where the importance of these cells and their regenerative capacity has been demonstrated. Through the addition of tissue-specific cytokines, differentiated cells were obtained in vitro from these cells, not only of mesenchymal linage but also of endodermal and ectodermal linage. Among them are the IPS, MAPCs cells.[citation needed][3]

Several publications have stressed the importance of the expression of pluripotentiality associated markers: the transcription factors Nanog, SOX2, Oct3/4,SSEA4, CD13, are indispensable for the stem cells to divide indefinitely without affecting their differentiation potential, i.e., maintaining their self-renovation capacity. The quantification of protein expression levels in these cells is very important in order to know their pluripotentiality level, as described in some publications.[citation needed]

Atari M et al., established a protocol for isolating and identifying the subpopulations of dental pulp pluripotent-like stem cells (DPPSC). These cells are SSEA4+, OCT3/4+, NANOG+, SOX2+, LIN28+, CD13+, CD105+, CD34-, CD45-, CD90+, CD29+, CD73+, STRO1+ and CD146-, and they show genetic stability in vitro based on genomic analysis with a newly described CGH technique.[citation needed]

DPPSCs were able to form both embryoid body-like structures (EBs) in vitro and teratoma-like structures that contained tissues derived from all three embryonic germ layers when injected in nude mice. DPPSCs can differentiate in vitro into tissues that have similar characteristics to mesoderm, endoderm and ectoderm layers.[citation needed]

Sodium metaphosphates

Sodium trimetaphosphate and sodium hexametaphosphate have been used to promote the growth, differentiation, and angiogenic potential of HDPCs. Results suggest that these metaphosphates may be candidates for dental pulp tissue engineering and regenerative endodontics.[4]


Dental pulp is the soft living tissue inside a tooth. Stem cells are found inside the soft living tissue.[5] Scientists have identified the mesenchymal type of stem cell inside dental pulp. This particular type of stem cell has the future potential to differentiate into a variety of other cell types including:


  • 2000 First discovery of DPSCs reported by Dr. Songtao Shi of NIH[14]
  • 2005 NIH announces discovery of DPSCs by Dr. Irina Kerkis [5]
  • 2006 IDPSC Kerkis reported discovery of Immature Dental Pulp Stem Cells (IDPSC),[2] a pluripotent sub-population of DPSC using dental pulp organ culture.
  • 2007 DPSC 1st animal studies begin for bone regeneration.[10][11]
  • 2007 DPSC 1st animal studies begin for dental end uses.[15][16]
  • 2008 DPSC 1st animal studies begin for heart therapies.[6]
  • 2008 IDPSC 1st animal study began for muscular dystrophy therapies.[8]
  • 2008 DPSC 1st animal studies begin for regenerating brain tissue.[7]
  • 2008 DPSC 1st advanced animal study for bone grafting announced. Reconstruction of large size cranial bone defects in rats.[13]
  • 2010 IDPSC 1st human trial for cornea replacement



  1. ^ Dannan, Aous (2009). “Dental-derived Stem Cells and whole Tooth Regeneration: an Overview”. Journal of Clinical Medicine Research. 1 (2): 63–71. doi:10.4021/jocmr2009.03.1230. PMC 3318856.PMID 22505970.
  2. ^ Jump up to:a b Kerkis, Irina; Kerkis, Alexandre; Dozortsev, Dmitri; Stukart-Parsons, Gaëlle Chopin; Gomes Massironi, Sílvia Maria; Pereira, Lygia V.; Caplan, Arnold I.; Cerruti, Humberto F. (2006). “Isolation and Characterization of a Population of Immature Dental Pulp Stem Cells Expressing OCT-4 and Other Embryonic Stem Cell Markers”. Cells Tissues Organs. 184 (3–4): 105–16.doi:10.1159/000099617. PMID 17409736.
  3. ^ Volponi, Ana Angelova; Pang, Yvonne; Sharpe, Paul T. (December 2010). “Stem cell-based biological tooth repair and regeneration”. Trends in Cell Biology. 20. doi:10.1016/j.tcb.2010.09.012.
  4. ^ Bae, Won-Jung; Jue, Seong-Suk; Kim, Sun-Young; Moon, Ji-Hoi; Kim, Eun-Cheol (2015). “Effects of Sodium Tri- and Hexametaphosphate on Proliferation, Differentiation, and Angiogenic Potential of Human Dental Pulp Cells”. Journal of Endodontics. 41 (6): 896–902. doi:10.1016/j.joen.2015.01.038.PMID 25777500.
  5. ^ Jump up to:a b Miura, M.; Gronthos, S.; Zhao, M.; Lu, B.; Fisher, L. W.; Robey, P. G.; Shi, S. (2003). “SHED: Stem cells from human exfoliated deciduous teeth”.Proceedings of the National Academy of Sciences. 100 (10): 5807–12.Bibcode:2003PNAS..100.5807M. doi:10.1073/pnas.0937635100.JSTOR 3147498. PMC 156282. PMID 12716973. Lay summaryNational Institute of Dental and Craniofacial Research (April 21, 2003).
  6. ^ Jump up to:a b Gandia, Carolina; Armiñan, Ana; García-Verdugo, Jose Manuel; Lledó, Elisa; Ruiz, Amparo; Miñana, M Dolores; Sanchez-Torrijos, Jorge; Payá, Rafael; Mirabet, Vicente; Carbonell-Uberos, Francisco; Llop, Mauro; Montero, Jose Anastasio; Sepúlveda, Pilar (2008). “Human Dental Pulp Stem Cells Improve Left Ventricular Function, Induce Angiogenesis, and Reduce Infarct Size in Rats with Acute Myocardial Infarction”. Stem Cells. 26 (3): 638–45.doi:10.1634/stemcells.2007-0484. PMID 18079433.
  7. ^ Jump up to:a b Nosrat, I; Widenfalk, J; Olson, L; Nosrat, CA (2001). “Dental Pulp Cells Produce Neurotrophic Factors, Interact with Trigeminal Neurons in Vitro, and Rescue Motoneurons after Spinal Cord Injury”. Developmental Biology. 238 (1): 120–32. doi:10.1006/dbio.2001.0400. PMID 11783998.[not in citation given]
  8. ^ Jump up to:a b Kerkis, Irina; Ambrosio, Carlos E; Kerkis, Alexandre; Martins, Daniele S; Zucconi, Eder; Fonseca, Simone AS; Cabral, Rosa M; Maranduba, Carlos MC; Gaiad, Thais P; Morini, Adriana C; Vieira, Natassia M; Brolio, Marina P; Sant’Anna, Osvaldo A; Miglino, Maria A; Zatz, Mayana (2008). “Early transplantation of human immature dental pulp stem cells from baby teeth to golden retriever muscular dystrophy (GRMD) dogs: Local or systemic?”.Journal of Translational Medicine. 6: 35. doi:10.1186/1479-5876-6-35.PMC 2529267. PMID 18598348.
  9. ^ Del Angel-Mosqueda, Casiano; Gutiérrez-Puente, Yolanda; López-Lozano, Ada Pricila; Romero-Zavaleta, Ricardo Emmanuel; Mendiola-Jiménez, Andrés; Medina-De la Garza, Carlos Eduardo; Márquez-M, Marcela; De la Garza-Ramos, Myriam Angélica (2015-09-03). “Epidermal growth factor enhances osteogenic differentiation of dental pulp stem cells in vitro”. Head & Face Medicine. 11: 29. doi:10.1186/s13005-015-0086-5. ISSN 1746-160X.
  10. ^ Jump up to:a b Graziano, Antonio; d’Aquino, Riccardo; Angelis, Maria Gabriella Cusella-De; De Francesco, Francesco; Giordano, Antonio; Laino, Gregorio; Piattelli, Adriano; Traini, Tonino; De Rosa, Alfredo; Papaccio, Gianpaolo (2008). “Scaffold’s surface geometry significantly affects human stem cell bone tissue engineering”. Journal of Cellular Physiology. 214 (1): 166–72.doi:10.1002/jcp.21175. PMID 17565721.
  11. ^ Jump up to:a b D’aquino, Riccardo; Papaccio, Gianpaolo; Laino, Gregorio; Graziano, Antonio (2008). “Dental Pulp Stem Cells: A Promising Tool for Bone Regeneration”. Stem Cell Reviews. 4 (1): 21–6. doi:10.1007/s12015-008-9013-5. PMID 18300003.
  12. ^ Jump up to:a b Stem Cell Information, National Institute of Health
  13. ^ Jump up to:a b de Mendonça Costa, André; Bueno, Daniela F.; Martins, Marília T.; Kerkis, Irina; Kerkis, Alexandre; Fanganiello, Roberto D.; Cerruti, Humberto; Alonso, Nivaldo; Passos-Bueno, Maria Rita (2008). “Reconstruction of Large Cranial Defects in Nonimmunosuppressed Experimental Design With Human Dental Pulp Stem Cells”. The Journal of Craniofacial Surgery. 19 (1): 204–10.doi:10.1097/scs.0b013e31815c8a54. PMID 18216690.
  14. ^ Gronthos, S.; Mankani, M.; Brahim, J.; Robey, P. G.; Shi, S. (2000).“Postnatal human dental pulp stem cells (DPSCs) in vitro and invivo”.Proceedings of the National Academy of Sciences. 97 (25): 13625–30.Bibcode:2000PNAS…9713625G. doi:10.1073/pnas.240309797.PMC 17626. PMID 11087820.
  15. ^ Onyekwelu, O; Seppala, M; Zoupa, M; Cobourne, MT (2007). “Tooth development: 2. Regenerating teeth in the laboratory”. Dental update. 34 (1): 20–2, 25–6, 29. PMID 17348555.
  16. ^ Cordeiro, Mabel M.; Dong, Zhihong; Kaneko, Tomoatsu; Zhang, Zhaocheng; Miyazawa, Marta; Shi, Songtao; Smith, Anthony J.; Nör, Jacques E. (2008). “Dental Pulp Tissue Engineering with Stem Cells from Exfoliated Deciduous Teeth”. Journal of Endodontics. 34 (8): 962–9.doi:10.1016/j.joen.2008.04.009. PMID 18634928.
  17. ^ Vishwakarma, Ajaykumar (2014-11-13). Stem Cell Biology and Tissue Engineering in Dental Sciences. Elsevier. ISBN 978-0-12-397157-9.
  • Atari, M.; Gil-Recio, C.; Fabregat, M.; Garcia-Fernandez, D.; Barajas, M.; Carrasco, M. A.; Jung, H.-S.; Alfaro, F. H.; Casals, N.; Prosper, F.; Ferres-Padro, E.; Giner, L. (2012). “Dental pulp of the third molar: a new source of pluripotent-like stem cells”. Journal of Cell Science. 125 (Pt 14): 3343–56.doi:10.1242/jcs.096537. PMID 22467856.
Skip to toolbar